

Reg. No. :

Question Paper Code : X 60383

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020 Fifth Semester Computer Science and Engineering CS 2303/CS 53/CS 1303/10144 CS 504 – THEORY OF COMPUTATION (Regulations 2008/2010) (Common to PTCS 2303 – Theory of computation for B.E. (Part-Time) Fifth Semester-Computer Science and Engineering – Regulations 2009)

Time : Three Hours

Maximum : 100 Marks

Answer ALL questions

PART – A

(10×2=20 Marks)

- 1. Draw the transition diagram (automata) for an identifier.
- 2. What is a non deterministic finite automaton ?
- 3. Construct NFA for the regular expression a*b*.
- 4. Is regular set is closed under complementation ? Justify.
- 5. What is a CFG ?
- 6. Define the term Ambiguity in grammars.
- 7. State the pumping lemma for CFLs.
- 8. What are the applications of Turing Machine ?
- 9. What is meant by recursive enumerable language ?
- 10. Define PCP.

X 60383	-2-	
	PART - B	(5×16=80 Marks)
11. a) i)	Construct DFA to accept the language. L = {w w is of even length and begins with 11}	(10)
ii)	Write a note on NFA and compare with DFA.	(6)
	(OR)	
b) i)	Convert the following NFA to a DFA.	(10)
	δ a b p {p} {p, q} q {r} {r} r {φ} {φ}	
ii)	Discuss on the relation between DFA and minimal DFA.	(6)
12. a) i)	Explain about Finite automata and Regular expressions.	(8)
ii)	Discuss about the closure properties of regular languages.	(8)
	(OR)	
b) i)	Prove that the following languages are not regular $\{0^n1^m \mid n \le m\}$ $\{0^n1^{2n} \mid n \ge 1\}$	(8)
ii)	Discuss on equivalence and minimization of Automata.	(8)
13. a) i)	Is the grammar $E \rightarrow E + E / E * E / id$ is ambiguous ? Justif answer.	y your (6)
ii)	Find the context free languages for the following grammar	s.
	1) S \rightarrow asbs / bsas / ϵ	
	2) S \rightarrow asb / ab.	(10)
	(OR)	
b) i)	Construct the PDA for $L = \{ww^R/w \text{ is in } (a + b)^*\}$	(10)
ii)	Discuss the equivalence between PDA and CFG.	(6)

14.	a)	i)	Explain Turing machine as a computer of integer functions with an example.	(10)
		ii)	Remove C productions from the given grammar.	(6)
			(OR)	
	b)	W	rite short notes on the following :	
		i)	Two-way infinite tape TM.	(8)
		ii)	Multiple tracks TM.	(8)
15.	a)	i)	If $\mathbf{L}_{_1}$ and $\mathbf{L}_{_2}$ are recursive language then $\mathbf{L}_{_1}\mathbf{U}\mathbf{L}_{_2}$ is a recursive language.	(6)
		ii)	Prove that the halting problem is undecidable.	(10)
			(OR)	
	b)) i)	State and prove the post's correspondence problem.	(10)
		ii)	Write a note on NP problems.	(6)